您好,欢迎来到读书世界   登录 
书名 作者 ISBN
 

 读书世界首页 > 工业技术 > 一般工业技术
工程应用弹性力学
作  者:凌伟
出 版 社: 出版年份:2008 年
ISBN:9787560527673 页数:203 页
支持介质:
图书介绍:本书要内容包括:笛卡儿张量数学基础、应变分析理论、弹性本构方程、直角坐标解平面问题等。
分享到:
图书封面及目录

1.4.总序
1.5.前言
1.13.第1章 绪论
2.13.1.1 弹性力学的任务与内容
2.14.1.2 弹性力学的基本假设与研究方法
2.15.1.3 弹性力学的发展概况
1.17.第2章 笛卡儿张量数学基础
2.17.2.1 指标记号与求和约定
2.19.2.2 置换算符δ_(ij)与轮换算符e_(ijk)
3.19.2.2.1 置换算符δ_(ij)
3.20.2.2.2 轮换算符e_(ijk)
3.21.2.2.3 散度定理
2.22.2.3 张量的基本概念与运算
3.22.2.3.1 坐标旋转变换
3.22.2.3.2 张量的定义
3.23.2.3.3 张量的运算
1.26.第3章 应力分析理论
2.26.3.1 应力矢量与应力张量
3.26.3.1.1 应力矢量
3.27.3.1.2 应力分量
3.28.3.1.3 应力张量
2.28.3.2 平衡方程与应力边界条件
2.30.3.3 主应力与主平面 应力不变量
3.30.3.3.1 斜面上的正应力与切应力
3.31.3.3.2 主应力与主方向
3.33.3.3.3 主应力与主方向的计算
2.34.3.4 极值切应力与八面体应力
2.36.3.5 球应力张量与偏斜应力张量
1.38.第4章 应变分析理论
2.38.4.1 变形的数学描述
2.40.4.2 变形张量与应变张量
3.40.4.2.1 变形张量
3.41.4.2.2 应变张量
3.42.4.2.3 应变张量的几何意义
3.44.4.2.4 应变状态分析
2.45.4.3 小变形线性应变张量
3.45.4.3.1 线性应变
3.46.4.3.2 转动张量及其几何意义
2.48.4.4 变形协调条件
3.48.4.4.1 相容方程
3.50.4.4.2 由应变求位移
1.53.第5章 弹性本构方程
2.53.5.1 应变能与应变余能
2.54.5.2 各向异性材料的弹性系数张量
2.55.5.3 各向同性材料的弹性常数
3.56.5.3.1 横观各向同性体
3.57.5.3.2 正交各向异性体
3.57.5.3.3 各向同性体
2.59.5.4 弹性常数的物理意义
1.61.第6章 弹性力学的基本方程、求解方法与一般原理
2.61.6.1 弹性力学的基本方程与边界条件
2.62.6.2 弹性力学的基本求解方法
3.62.6.2.1 位移解法
3.64.6.2.2 应力解法
3.65.6.2.3 解法的选择与求解途径
2.66.6.3 弹性力学的一般原理
3.66.6.3.1 圣文南原理
3.67.6.3.2 叠加原理
3.67.6.3.3 解的唯一性定理
2.68.6.4 逆解法举例
3.68.6.4.1 等截面直杆的自重拉伸
3.71.6.4.2 等截面圆杆扭转
3.72.6.4.3 等截面直杆纯弯曲
1.76.第7章 等截面直杆的扭转与弯曲
2.76.7.1 扭转问题的位移解法
3.76.7.1.1 位移法基本方程
3.79.7.1.2 椭圆截面杆扭转
3.81.7.1.3 矩形截面杆扭转
2.83.7.2 扭转问题的应力解法
3.83.7.2.1 应力法基本方程
3.86.7.2.2 带半圆槽的圆杆扭转
3.87.7.2.3 空心圆管扭转
2.88.7.3 扭转问题的薄膜比拟解法
3.88.7.3.1 薄膜比拟法基本方程
3.89.7.3.2 狭长矩形杆扭转
3.90.7.3.3 开口薄壁杆扭转
3.90.7.3.4 闭口薄壁杆扭转
2.91.7.4 悬臂梁受集中力的弯曲问题
3.91.7.4.1 悬臂梁弯曲基本方程
3.94.7.4.2 椭圆截面悬臂梁弯曲
3.95.7.4.3 矩形截面悬臂梁弯曲
1.98.第8章 直角坐标解平面问题
2.98.8.1 平面问题基本方程
3.98.8.1.1 平面应变问题
3.99.8.1.2 平面应力问题
3.100.8.1.3 应力协调方程
2.101.8.2 艾雷应力函数及其性质
3.101.8.2.1 艾雷应力函数
3.102.8.2.2 应力函数的边界性质
3.103.8.2.3 多项式应力函数
2.104.8.3 半逆解法举例
3.104.8.3.1 集中力作用的悬臂梁
3.107.8.3.2 均布载荷作用的简支梁
2.109.8.4 三角级数解
3.109.8.4.1 三角级数应力函数
3.110.8.4.2 正弦分布载荷作用的简支梁
3.111.8.4.3 横向集中力相对作用的梁
1.115.第9章 极坐标解平面问题
2.115.9.1 极坐标基本方程与求解
3.115.9.1.1 极坐标基本方程
3.118.9.1.2 集中力作用剪切弯曲的圆弧形曲梁
3.121.9.1.3 均匀拉伸小圆孔平板的孔周局部应力
3.123.9.1.4 顶端受集中力作用的楔形体
3.125.9.1.5 边界受集中力作用的半无限大平板
2.126.9.2 极坐标应力轴对称问题
3.126.9.2.1 应力轴对称问题基本方程
3.128.9.2.2 纯弯曲的圆弧形曲梁
2.129.9.3 极坐标位移轴对称问题
3.129.9.3.1 位移轴对称问题基本方程
3.130.9.3.2 均匀受压的厚壁圆筒
3.132.9.3.3 旋转圆盘
1.135.第10章 复变函数解平面问题
2.135.10.1 复应力函数与应力?位移的复变函数表示
3.135.10.1.1 应力函数的复变函数表示
3.136.10.1.2 应力分量的复变函数表示
3.136.10.1.3 位移分量的复变函数表示
2.138.10.2 复应力函数的确定程度与边界条件
3.138.10.2.1 复应力函数的确定程度
3.139.10.2.2 边界条件的复变函数表示
2.139.10.3 多连通域的复应力函数
3.140.10.3.1 应力单值条件
3.140.10.3.2 位移单值条件
3.141.10.3.3 内边界合力对复应力函数的影响
3.142.10.3.4 无限大多连通域的复应力函数
3.143.10.3.5 均匀拉伸的小圆孔平板
2.145.10.4 小裂纹板的应力与位移
3.145.10.4.1 小裂纹板的复应力函数
3.147.10.4.2 小裂纹板的位移
3.148.10.4.3 均匀加载小裂纹板的应力
3.149.10.4.4 裂纹尖端的应力强度因子
3.150.10.4.5 裂纹尖端的位移
1.153.第11章 空间对称问题
2.153.11.1 柱坐标系基本方程
2.155.11.2 球坐标系基本方程
2.157.11.3 空间球对称问题
2.158.11.4 空间轴对称问题
3.158.11.4.1 轴对称问题基本方程
3.159.11.4.2 拉甫位移势函数
3.161.11.4.3 无限大弹性体受集中力作用
3.162.11.4.4 半无限大弹性体表面受垂直集中力作用
2.164.11.5 接触问题
3.164.11.5.1 半无限大弹性体表面受半球分布载荷作用
3.165.11.5.2 两球体挤压接触问题
3.166.11.5.3 两弹性体一般接触问题
1.170.第12章 温度应力
2.170.12.1 热弹性问题基本方程
3.170.12.1.1 热力学第一定律
3.171.12.1.2 热力学第二定律
3.172.12.1.3 热弹性本构方程
3.173.12.1.4 热传导方程
2.174.12.2 热弹性问题位移法
3.174.12.2.1 杜哈梅-纽曼原理
3.175.12.2.2 热弹性问题位移势函数
3.176.12.2.3 不产生热应力的变温场的充要条件
2.177.12.3 热弹性平面问题
1.182.第13章 能量原理与变分解法
2.182.13.1 泛函与变分
3.182.13.1.1 泛函的概念
3.183.13.1.2 泛函的变分
3.184.13.1.3 变分法
2.185.13.2 能量原理
3.185.13.2.1 外力功与应变能 外力余功与应变余能
3.185.13.2.2 可能位移与可能应力 可能功与可能余功原理
3.187.13.2.3 虚功与余虚功原理 最小势能与最小余能原理
2.189.13.3 能量原理的应用
3.189.13.3.1 直梁平面弯曲的挠度曲线与边界条件
3.190.13.3.2 直杆扭转的微分方程与边界条件
3.192.13.3.3 卡氏定理
2.192.13.4 变分方程的近似解法
3.193.13.4.1 位移近似解法
3.194.13.4.2 应力近似解法
3.195.13.4.3 近似解法的应用
2.198.13.5 广义变分原理简介
3.198.13.5.1 海林格-瑞斯纳广义变分原理
3.199.13.5.2 胡海昌-鹫津广义变分原理
3.200.13.5.3 各种变分原理之间的关系
1.203.参考书目
   
帮助中心   联系我们    意见反馈    在线客服
     携手著名高校图书馆之海量藏书资源,专业提供图书试读及电子书服务。
copyright 2011-2012 www.readbooks.cc 读书世界 版权所有